Abstract:Traffic light perception is an essential component of the camera-based perception system for autonomous vehicles, enabling accurate detection and interpretation of traffic lights to ensure safe navigation through complex urban environments. In this work, we propose a modularized perception framework that integrates state-of-the-art detection models with a novel real-time association and decision framework, enabling seamless deployment into an autonomous driving stack. To address the limitations of existing public datasets, we introduce the ATLAS dataset, which provides comprehensive annotations of traffic light states and pictograms across diverse environmental conditions and camera setups. This dataset is publicly available at https://url.fzi.de/ATLAS. We train and evaluate several state-of-the-art traffic light detection architectures on ATLAS, demonstrating significant performance improvements in both accuracy and robustness. Finally, we evaluate the framework in real-world scenarios by deploying it in an autonomous vehicle to make decisions at traffic light-controlled intersections, highlighting its reliability and effectiveness for real-time operation.
Abstract:Effective traffic light detection is a critical component of the perception stack in autonomous vehicles. This work introduces a novel deep-learning detection system while addressing the challenges of previous work. Utilizing a comprehensive dataset amalgamation, including the Bosch Small Traffic Lights Dataset, LISA, the DriveU Traffic Light Dataset, and a proprietary dataset from Karlsruhe, we ensure a robust evaluation across varied scenarios. Furthermore, we propose a relevance estimation system that innovatively uses directional arrow markings on the road, eliminating the need for prior map creation. On the DriveU dataset, this approach results in 96% accuracy in relevance estimation. Finally, a real-world evaluation is performed to evaluate the deployment and generalizing abilities of these models. For reproducibility and to facilitate further research, we provide the model weights and code: https://github.com/KASTEL-MobilityLab/traffic-light-detection.
Abstract:Taking into account information across the temporal domain helps to improve environment perception in autonomous driving. However, it has not been studied so far whether temporally fused neural networks are vulnerable to deliberately generated perturbations, i.e. adversarial attacks, or whether temporal history is an inherent defense against them. In this work, we study whether temporal feature networks for object detection are vulnerable to universal adversarial attacks. We evaluate attacks of two types: imperceptible noise for the whole image and locally-bound adversarial patch. In both cases, perturbations are generated in a white-box manner using PGD. Our experiments confirm, that attacking even a portion of a temporal input suffices to fool the network. We visually assess generated perturbations to gain insights into the functioning of attacks. To enhance the robustness, we apply adversarial training using 5-PGD. Our experiments on KITTI and nuScenes datasets demonstrate, that a model robustified via K-PGD is able to withstand the studied attacks while keeping the mAP-based performance comparable to that of an unattacked model.